Первое начало термодинамики работа. Первое начало термодинамики -объяснение этого закона и практические примеры. Работа газа при изменении его объема

Первое начало термодинамики

Первое начало термодинамики представляет собой закон сохранения энергии, один из всœеобщих законов природы (наряду с законами сохранения импульса, заряда и симметрии):

Энергия неуничтожаема и несотворяема; она может только переходить из одной формы в другую в эквивалентных соотношениях.

Первое начало термодинамики представляет собой постулат - оно не должна быть доказано логическим путем или выведено из каких-либо более общих положений. Истинность этого постулата подтверждается тем, что ни одно из его следствий не находится в противоречии с опытом. Приведем еще некоторые формулировки первого начала термодинамики:

Полная энергия изолированной системы постоянна;

Невозможен вечный двигатель первого рода (двигатель, совершающий работу без затраты энергии).

Первое начало термодинамики устанавливает соотношение между теплотой Q, работой А и изменением внутренней энергии системы ∆U:

Изменение внутренней энергии системы равно количеству сообщенной системе теплоты минус количество работы, совершенной системой против внешних сил.

∆U = Q-A (1.1)

dU = δQ-δA (1.2)

Уравнение (1.1) является математической записью 1-го начала термодинамики для конечного, уравнение (1.2) - для бесконечно малого изменения состояния системы.

Внутренняя энергия является функцией состояния; это означает, что изменение внутренней энергии ∆U не зависит от пути перехода системы из состояния 1 в состояние 2 и равно разности величин внутренней энергии U 2 и U 1 в этих состояниях:

∆U = U 2 -U 1 (1.3)

Следует отметить, что определить абсолютное значение внутренней энергии системы невозможно; термодинамику интересует лишь изменение внутренней энергии в ходе какого-либо процесса.

Рассмотрим приложение первого начала термодинамики для определœения работы, совершаемой системой при различных термодинамических процессах (мы будем рассматривать простейший случай - работу расширения идеального газа).

Изохорный процесс (V = const; ∆V = 0).

Поскольку работа расширения равна произведению давления и изменения объёма, для изохорного процесса получаем:

Изотермический процесс (Т = const).

Из уравнения состояния одного моля идеального газа получаем:

δА = PdV = RT(I.7)

Проинтегрировав выражение (I.6) от V 1 до V 2 , получим

A=RT= RTln= RTln(1.8)

Изобарный процесс (Р = const).

Q p = ∆U + P∆V (1.12)

В уравнении (1.12) сгруппируем переменные с одинаковыми индексами. Получаем:

Q p = U 2 -U 1 +P(V 2 -V 1) = (U 2 + PV 2)-(U 1 +PV 1) (1.13)

Введем новую функцию состояния системы - энтальпию Н, тождественно равную сумме внутренней энергии и произведения давления на объём: Н = U + PV. Тогда выражение (1.13) преобразуется к следующему виду:

Q p = H 2 -H 1 = H (1.14)

Т.о., тепловой эффект изобарного процесса равен изменению энтальпии системы.

Адиабатический процесс (Q = 0, δQ = 0).

При адиабатическом процессе работа расширения совершается за счёт уменьшения внутренней энергии газа:

A = -dU=C v dT (1.15)

В случае если Сv не зависит от температуры (что справедливо для многих реальных газов), работа͵ произведённая газом при его адиабатическом расширении, прямо пропорциональна разности температур:

A = -C V ∆T (1.16)

Задача №1. Найти изменение внутренней энергии при испарении 20 г этанола при температуре его кипения. Удельная теплота парообразования этилового спирта при этой температуре составляет 858,95 Дж/г, удельный объём пара – 607 см 3 /г (объемом жидкости пренебречь).

Решение:

1. Вычислим теплоту испарения 20 г этанола: Q=q уд ·m=858,95Дж/г·20г = 17179Дж.

2. Вычислим работу по изменению объёма 20 г спирта при переходе его из жидкого состояния в парообразное: A= P∆V,

где Р – давление паров спирта͵ равно атмосферному, 101325 Па (т.к. всякая жидкость кипит, когда давление ее паров равно атмосферному).

∆V=V 2 -V 1 =V ж -V п, т.к. V ж << V п, то объмом жидкости можно пренебречь и тогда V п =V уд ·m. Cледовательно, А=Р·V уд ·m. А=-101325Па·607·10 -6 м 3 /г·20г=-1230 Дж

3. Вычислим изменение внутренней энергии:

∆U=17179Дж – 1230 Дж = 15949 Дж.

Поскольку ∆U>0, то следовательно при испарении этанола происходит увеличение внутренней энергии спирта.

Первое начало термодинамики - понятие и виды. Классификация и особенности категории "Первое начало термодинамики" 2017, 2018.

  • - Первое начало термодинамики. Внутренняя энергия, теплота. Работа газа при расширении.

    Свойства тел при их механическом и тепловом взаимодействия друг с другом достаточно хорошо могут быть описаны на основе молекулярно - кинетической теории. Согласно этой теории все тела состоят из мельчайших частиц – атомов, молекул или ионов, которые находятся в... .


  • - Первое начало термодинамики.

    Внутренняя энергия может изменятся в основном за счёт двух процессов: за счёт работы, совершаемой над системой, и за счёт сообщения системе некоторого количества теплоты. Например, работа изменяется при движении поршня, когда внешние силы совершают работу над газом,... .


  • - Первое начало термодинамики, термодинамические изопроцессы.

  • - Первое начало термодинамики

    . (2) Здесь под понимается работа, совершаемая телом. Бесконечно малое изменение коли-чества тепла, также как и, не всегда является полным дифференциалом. Согласно определению внутренняя энергия есть однозначная функция состояния термодинами-ческой системы....

  • - Лекция 3. Первое начало термодинамики и тепловые свойства тел.

    Тепловые процессы можно разделить на два основных типа – квазистатические (квази-равновесные) и неравновесные. Квазистатические процессы состоят из непрерывно следующих друг за другом состояний равновесия. Для описания такого процесса можно пользоваться... .


  • - Внутренняя энергия, первое начало термодинамики.

    Тема 1.Основы молекулярной физики и термодинамики. Резюме. Все указанные процессы можно рассматривать как частные случаи общего более сложного процесса, при котором давление и объем связаны уравнением. (10) При n = 0 уравнение описывает изобару, при n = 1 –... .


  • - Внутренняя энергия, первое начало термодинамики

    Равновесные процессы в идеальном газе. Теплоемкость идеального газа. 4. Виды равновесных процессов.Определение 1. Внутренней энергией объектаназывают часть его полной энергии за вычетом кинетической энергии движения объекта, как... .


  • Внутренняя энергия может изменяться за счет в основном двух различных процессов: совершения над телом работы А и сообщения ему количества тепла Q. Совершение работы сопровождается перемещением внешних тел, воздействующих на систему. Так, например, при вдвигании поршня, закрывающего сосуд с газом, поршень, перемещаясь, совершает над газом работу Л. По третьему закону. Ньютона газ при этом совершает над поршнем работу

    Сообщение газу тепла не связано с перемещением внешних тел и, следовательно, не связано с совершением над газом макроскопической (т. е. относящейся ко всей совокупности молекул, из которых состоит тело) работы. В этом случае изменение внутренней энергии обусловлено тем, что отдельные молекулы более нагретого тела совершают работу над отдельными молекулами тела, нагретого меньше. Передача энергии происходит при этом также через излучение. Совокупность микроскопических (т. е. захватывающих не все тело, а отдельные его молекулы) процессов, приводящих к передаче энергии от тела к телу, носит название теплопередачи.

    Подобно тому как количество энергии, переданное одним телом другому, определяется работой А, совершаемой друг над другом телами, количество энергии, переданное от тела к телу путем теплопередачи, определяется количеством тепла Q, отданного одним телом другому. Таким образом, приращение внутренней энергии системы должно быть равно сумме совершенной над системой работы А и количества сообщенного системе тепла

    Здесь - начальное и конечное значения внутренней энергии системы. Обычно вместо работы А, совершаемой внешними телами над системой, рассматривают работу А (равную -А), совершаемую системой над внешними телами. Подставив -А вместо А и разрешив уравнение (83.1) относительно Q, получим:

    Уравнение (83.2) выражает закон сохранения энергии и представляет собой содержание первого закона (начала) термодинамики. Словами его можно выразить следующим образом: количество тепла, сообщенное системе, идет на приращение внутренней энергии системы и на совершение системой работы над внешними телами.

    Сказанное отнюдь не означает, что всегда при сообщении тепла внутренняя энергия системы возрастает. Может случиться, что, несмотря на сообщение системе тепла, ее энергия не растет, а убывает . В этом случае согласно (83.2) , т. е. система совершает работу как за счет получаемого тепла Q, так и за счет запаса внутренней энергии, убыль которой равна . Нужно также иметь в виду, что величины Q и А в (83.2) являются алгебраическими означает, что система в действительности не получает тепло, а отдает).

    Из (83.2) следует, что количество тепла Q можно измерять в тех же единицах, что и работу или энергию. В СИ единицей количества тепла служит джоуль.

    Для измерения количества тепла применяется также особая единица, называемая калорией. Одна калория равна количеству тепла, необходимому для нагревания 1 г воды от 19,5 до 20,5 °С. Тысяча калорий называется большой калорией или килокалорией.

    Опытным путем установлено, что одна калория эквивалентна 4,18 Дж. Следовательно, один джоуль эквивалентен 0,24 кал. Величина называется механическим эквивалентом тепла.

    Если величины, входящие в (83.2), выражены в разных единицах, то некоторые из этих величии нужно умножить на соответствующий эквивалент. Так, например, выражая Q в калориях, a U и А в джоулях, соотношение (83.2) нужно записать в виде

    В дальнейшем мы будем всегда предполагать, что Q, А и U выражены в одинаковых единицах, и писать уравнение первого начала термодинамики в виде (83.2).

    При вычислении совершенной системой работы или полученного системой тепла обычно приходится разбивать рассматриваемый процесс на ряд элементарных процессов, каждый из которых соответствует весьма малому (в пределе - бесконечно малому) изменению параметров системы. Уравнение (83.2) для элементарного процесса имеет вид

    где - элементарное количество тепла, - элементарная работа и - приращение внутренней энергии системы в ходе данного элементарного процесса.

    Весьма важно иметь в виду, что и нельзя рассматривать как приращения величин Q и А.

    Соответствующее элементарному процессу А какой-либо величины можно рассматривать как приращение этой величины только в том случае, если соответствующая переходу из одного состояния в другое, не зависит от пути, по которому совершается переход, т. е. если величина f является функцией состояния. В отношении функции состояния можно говорить о ее «запасе» в каждом из состояний. Например, можно говорить о запасе внутренней энергии, которым обладает система в различных состояниях.

    Как мы увидим в дальнейшем, величина совершенной системой работы и количество полученного системой тепла зависят от пути перехода системы из одного состояния в другое. Следовательно, ни Q, ни А не являются функциями состояния, в силу чего нельзя говорить о запасе тепла или работы, которым обладает система в различных состояниях.

    Термодинамический процесс называется обратимым, если он может происходить как в прямом, так и в обратном направлении, причем если такой процесс происходит сначала в прямом, а затем в обратном направлении и система возвращается в исходное состояние, то в окружающей среде и в этой системе не происходит никаких изменений.

    Всякий процесс, не удовлетворяющий этим условиям, является необратимым.

    Любой равновесный процесс является обратимым. Обратимость равновесного процесса, происходящего в системе, следует из того, что ее любое промежуточное состояние есть состояние термодинамического равновесия; независимо от того идет ли процесс в прямом или в обратном направлении. Реальные процессы сопровождаются рассеянием энергии (из-за трения, теплопроводности и т.д.), которая нами не рассматривается. Обратимые процессы – это идеализация реальных процессов. Их рассмотрение важно по 2-м причинам: 1) многие процессы в природе и технике практически обратимы; 2) обратимые процессы являются наиболее экономичными; имеют максимальный термический коэффициент полезного действия, что позволяет указать пути повышения КПД реальных тепловых двигателей.

    Работа газа при изменении его объема.

    Работа совершается только тогда, когда изменяется объем.

    Найдем в общем виде внешнюю работу, совершаемую газом при изменении его объема. Рассмотрим, например, газ, находящийся под поршнем в цилиндрическом сосуде. Если газ, расширяясь, передвигает поршень на бесконечно малое расстояние dl, то производит над ним работу

    A=Fdl=pSdl=pdV, где S-площадь поршня, Sdl=dV-изменение объема системы. Таким образом, A= pdV.(1)

    Полную работу А, совершаемую газом при изменении его объема от V1 до V2, найдем интегрированием формулы (1): A= pdV(от V1 до V2).(2)

    Результат интегрирования определяется характером зависимости между давлением и объемом газа. Найденное для работы выражение (2) справедливо при любых изменениях объема твердых, жидких и газообразных тел.

    П

    Полная работа газа будет равна площади фигуры, ограниченной осью абсцисс, кривой и значениями V1,V2.

    роизведенную при том или ином процессе работу можно изобразить графически с помощью кривой в координатах p,V.

    Графически можно изображать только равновесные процессы – процессы, состоящие из последовательности равновесных состояний. Они протекают так, что изменение термодинамических параметров за конечный промежуток времени бесконечно мало. Все реальные процессы неравновесны (они протекают с конечной скоростью), но в ряде случаев их неравновесностью можно пренебречь (чем медленнее процесс протекает, тем он ближе к равновесному).

    Первое начало термодинамики.

    Существует 2 способа обмена энергией между телами:

      передача энергии через перенос тепла (посредством теплопередачи);

      через совершение работы.

    Таким образом, можно говорить о 2-х формах передачи энергии от одних тел к другим: работе и теплоте. Энергия механического движения может превращаться в энергию теплового движения, и наоборот. При этих превращениях соблюдается закон сохранения и превращения энергии; применительно к термодинамическим процессам этим законом и является первое начало термодинамики:

    ∆U=Q-A или Q=∆U+A.(1)

    Т.е, теплота, сообщаемая системе, расходуется на изменение ее внутренней энергии и на совершение ею работы против внешних сил. Это выражение в дифференциальной форме будет иметь вид Q=dU+A(2) , где dU- бесконечно малое изменение внутренней энергии системы, A- элементарная работа, Q – бесконечно малое количество теплоты.

    Из формулы (1) следует, что в СИ количество теплоты выражается в тех же единицах, что работа и энергия, т.е. в джоулях(Дж).

    Если система периодически возвращается в первоначальное состояние, то изменение ее внутренней энергии ∆U=0. Тогда, согласно 1-му началу термодинамики, A=Q,

    Т.е вечный двигатель первого рода – периодически действующий двигатель, который совершал бы большую работу, чем сообщенная ему извне энергия, - невозможен (одна из формулировок 1-го начала термодинамики).

    Применение 1-го начала термодинамики к изопроцессам и к адиабатическому процессу.

    Среди равновесных процессов, происходящих с термодинамическими системами, выделяются изопроцессы, при которых один из основных параметров состояния сохраняется постоянным.

    Изохорный процесс (V = const )

    При таком процессе газ не совершает работы над внешними телами, т.е A=pdV=0.

    Тогда, из 1-го начала термодинамики следует, что вся теплота, переданная телу, идет на увеличение его внутренней энергии: Q=dU. Зная, что dU m =C v dT.

    Тогда для произвольной массы газа получим Q= dU=m\M* C v dT.

    Изобарный процесс (p = const ).

    При этом процессе работа газа при увеличении объема от V1 до V2 равна A= pdV(от V1 до V2)=p(V2-V1) и определяется площадью фигуры, ограниченной осью абсцисс, кривой p=f(V) и значениями V1,V2. Если вспомнить ур-е Менделеева-Клапейрона для выбранных нами 2-х состояний, то

    pV 1 =m\M*RT 1 , pV 2 =m\M*RT 2 , откуда V 1 - V 2 = m\M*R\p(T 2 - T 1). Тогда выражение для работы изобарного расширения примет вид A= m\M*R(T 2 - T 1)(1.1).

    При изобарном процессе при сообщении газу массой m количества теплоты

    Q=m\M*C p dT его внутренняя энергия возрастает на величину dU=m\M*C v dT. При этом газ совершает работу, определяемую выражением (1.1).

    Изотермический процесс (T = const ).

    Этот процесс описывается законом Бойля-Мариотта: pV=const.

    Найдем работу изотермического расширения газа: A= pdV(от V1 до V2)= m/M*RTln(V2/V1)=m/M*RTln(p1/p2).

    Т.к при Т=const внутренняя энергия идеального газа не изменяется: dU=m/M* C v dT=0, то из 1-го начала термодинамики (Q=dU+A) следует, что для изотермического процесса Q=A, т.е все количество теплоты, сообщаемое газу, расходуется на совершение им работы против внешних сил: Q=A=m/M*RTln(p1/p2)=m/M*RTln(V2

    Следовательно, чтобы при расширении газа температура не понижалась, к газу в течение изотермического процесса необходимо подводить количество теплоты, эквивалентное внешней работе расширения.

    Первое начало термодинамики - один из трех основных законов термодинамики, представляющий собой закон сохранения энергии для систем, в которых существенное значение имеют тепловые процессы.

    Согласно первому началу термодинамики, термодинамическая система (например, пар в тепловой машине) может совершать работу только за счёт своей внутренней энергии или каких-либо внешних источников энергии.

    Первое начало термодинамики объясняет невозможность существования вечного двигателя 1-го рода, который совершал бы работу, не черпая энергию из какого-либо источника.

    Сущность первого начала термодинамики заключается в следующем:

    При сообщении термодинамической системе некоторого количества теплоты Q в общем случае происходит изменение внутренней энергиисистемы DU и система совершает работу А:

    Уравнение (4), выражающее первое начало термодинамики, является определением изменения внутренней энергии системы (DU), так как Q и А - независимо измеряемые величины.

    Внутреннюю энергию системы U можно, в частности, найти, измеряя работу системы в адиабатном процессе (то есть при Q = 0): А ад = - DU, что определяет U с точностью до некоторой аддитивной постоянной U 0:

    U = U + U 0 (5)

    Первое начало термодинамики утверждает, что U является функцией состояния системы, то есть каждое состояние термодинамической системы характеризуется определённым значением U, независимо от того, каким путём система приведена в данное состояние (в то время как значения Q и А зависят от процесса, приведшего к изменению состояния системы). При исследовании термодинамических свойств физической систем первое начало термодинамики обычно применяется совместно со вторым началом термодинамики.

    3. Второе начало термодинамики

    Второе начало термодинамики является законом, в соответствии с которым макроскопические процессы, протекающие с конечной скоростью, необратимы.

    В отличие от идеальных (без потерь) механических или электродинамических обратимых процессов, реальные процессы, связанные с теплообменом при конечной разности температур (т. е. текущие с конечной скоростью), сопровождаются разнообразными потерями: на трение, диффузию газов, расширением газов в пустоту, выделением джоулевой теплоты и т.д.

    Поэтому эти процессы необратимы, то есть могут самопроизвольно протекать только в одном направлении.

    Второе начало термодинамики возникло исторически при анализе работы тепловых машин.

    Само название «Второе начало термодинамики» и первая его формулировка (1850 г.) принадлежат Р. Клаузиусу: «…невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более нагретым».

    Причем такой процесс невозможен в принципе: ни путем прямого перехода теплоты от более холодных тел к более теплым, ни с помощью каких–либо устройств без использования каких-либо других процессов.

    В 1851 году английский физик У. Томсон дал другую формулировку второго начала термодинамики: «В природе невозможны процессы, единственным следствием которых был бы подъем груза, произведенный за счет охлаждения теплового резервуара».

    Как видно, обе приведённые формулировки второго начала термодинамики практически одинаковы.

    Отсюда следует невозможность реализации двигателя 2-го рода, т.е. двигателя без потерь энергии на трение и другие сопутствующие потери.

    Кроме того, отсюда следует, что все реальные процессы, происходящие в материальном мире в открытых системах, необратимы.

    В современной термодинамике второе начало термодинамики изолированных систем формулируется единым и самым общим образом как закон возрастания особой функции состояния системы, которую Клаузиус назвал энтропией (S).

    Физический смысл энтропии состоит в том, что в случае, когда материальная система находится в полном термодинамическом равновесии, элементарные частицы, из которых состоит эта система, находятся в неуправляемом состоянии и совершают различные случайные хаотические движения. В принципе можно определить общее число этих всевозможных состояний. Параметр, который характеризует общее число этих состояний, и есть энтропия.

    Рассмотрим это на простом примере.

    Пусть изолированная система состоит из двух тел «1» и «2», обладающих неодинаковой температурой T 1 >T 2 . Тело «1» отдает некоторое количество тепла Q , а тело «2» его получает. При этом идет тепловой поток от тела «1» к телу «2». По мере уравнивания температур увеличивается суммарное количество элементарных частиц тел «1» и «2», находящихся в тепловом равновесии. По мере увеличения этого количества частиц увеличивается и энтропия. И как только наступит полное тепловое равновесие тел «1» и «2», энтропия достигнет своего максимального значения.

    Таким образом, в замкнутой системе энтропия S при любом реальном процессе либо возрастает, либо остаётся неизменной, т. е. изменение энтропии dS ³ 0. Знак равенства в этой формуле имеет место только для обратимых процессов. В состоянии равновесия, когда энтропия замкнутой системы достигает максимума, никакие макроскопические процессы в такой системе, согласно второму началу термодинамики, невозможны.

    Отсюда следует, что энтропия - физическая величина, количественно характеризующая особенности молекулярного строения системы, от которых зависят энергетические преобразования в ней.

    Связь энтропии с молекулярным строением системы первым объяснил Л. Больцман в 1887 году. Он установил статистический смысл энтропии (формула 1.6). Согласно Больцману (высокая упорядоченность имеет относительно низкую вероятность)

    где k - постоянная Больцмана, P – статистический вес.

    k = 1.37·10 -23 Дж/К.

    Статистический вес Р пропорционален числу возможных микроскопических состояний элементов макроскопической системы (например, различных распределений значений координат и импульсов молекул газа, отвечающих определённому значению энергии, давления и других термодинамических параметров газа), т. е. характеризует возможное несоответствие микроскопического описания макросостояния.

    Для изолированной системы термодинамическая вероятность W данного макросостояния пропорциональна его статистическому весу и определяется энтропией системы:

    W = exp (S/k). (7)

    Таким образом, закон возрастания энтропии имеет статистически-вероятностный характер и выражает постоянную тенденцию системы к переходу в более вероятное состояние. Отсюда следует, что наиболее вероятным состоянием, достижимым для системы, является такое, в котором события, происходящие в системе одновременно, статистически взаимно компенсируются.

    Максимально вероятным состоянием макросистемы является состояние равновесия, которого она может в принципе достичь за достаточно большой промежуток времени.

    Как было указано выше, энтропия является величиной аддитивной, то есть она пропорциональна числу частиц в системе. Поэтому для систем с большим числом частиц даже самое ничтожное относительное изменение энтропии, приходящейся на одну частицу, существенно меняет её абсолютную величину; изменение же энтропии, стоящей в показателе экспоненты в уравнении (7), приводит к изменению вероятности данного макросостояния W в огромное число раз.

    Именно этот факт является причиной того, что для системы с большим числом частиц следствия второго начала термодинамики практически имеют не вероятностный, а достоверный характер. Крайне маловероятные процессы, сопровождающиеся сколько-нибудь заметным уменьшением энтропии, требуют столь огромных времён ожидания, что их реализация является практически невозможной. В то же время малые части системы, содержащие небольшое число частиц, испытывают непрерывные флуктуации, сопровождающиеся лишь небольшим абсолютным изменением энтропии. Средние значения частоты и размеров этих флуктуаций являются таким же достоверным следствием статистической термодинамики, как и само второе начало термодинамики.

    Буквальное применение второго начала термодинамики к Вселенной как целому, приведшее Клаузиуса к неправильному выводу о неизбежности «тепловой смерти Вселенной», является неправомерным, так как в природе в принципе не может существовать абсолютно изолированных систем. Как будет показано далее, в разделе неравновесной термодинамики, процессы, протекающие в открытых системах, подчиняются другим законам и имеют другие свойства.

    Свойства тел при их механическом и тепловом взаимодействия друг с другом достаточно хорошо могут быть описаны на основе молекулярно - кинетической теории . Согласно этой теории все тела состоят из мельчайших частиц – атомов, молекул или ионов, которые находятся в непрерывном хаотическом движении, называемом тепловым , и взаимодействуют между собой. Движение этих частиц подчиняется законам механики. Состояние системы таких частиц определяется совокупностью значений ее термодинамических параметров (или параметров состояния), т.е. физических величин, характеризующих макроскопические свойства системы. Обычно в качестве параметров состояния выбирают температуру, давление, удельный объем. Внутренней энергией такой системы называется энергия, зависящая только от состояния термодинамической системы. Внутренняя энергия системы состоит из кинетической энергии молекул, составляющих систему, потенциальной энергии их взаимодействия друг с другом, внутримолекулярной энергии (т.е. энергии взаимодействия атомов или ионов в молекулах, энергии электронных оболочек атомов и ионов, внутриядерной энергии) и энергии электромагнитного излучения в системе.

    Система может обладать также и внешней энергией , которая представляет собой сумму кинетической энергия движения системы как целого (кинетической энергии центра масс системы) и потенциальной энергии системы в поле внешних сил. Внутренняя и внешняя энергия составляют полную энергию системы.

    Однако строгий подсчет внутренней энергии тела затруднен. Внутренняя энергия может быть определена только с точностью до постоянного слагаемого, которое нельзя найти методами термодинамики. Но в большинстве случаев приходится иметь дело только с изменениями внутренней энергии DU , а не с ее абсолютным значением U , поэтому отсчет внутренней энергии можно вести от внутримолекулярной энергии, которую в большинстве случаев можно считать постоянным слагаемым. Чаще всего за нуль внутренней энергии (U =0) принимают энергию, которой обладает система при абсолютном нуле (т.е. T =0 K).

    Внутреннюю энергию тела можно изменить путем теплообмена или механическим воздействием, т.е. производя над телом работу . Теплообмен и механическое воздействие в ряде случаев могут приводить к одинаковым изменениям внутренней энергии тела. Это дает возможность сравнивать теплоту и работу и измерять их в одинаковых единицах. Теплота представляет собой энергию, которая передается от одного тела к другому при их контакте или путем излучения нагретого тела, т.е. по существу мы имеем дело с работой, которую совершают уже не макроскопические тела, а хаотически движущиеся микрочастицы. Таким образом, термодинамическая система может получать или отдавать некоторое количество теплоты dQ , может производить работу или над ней может быть произведена работа. Совершение системой или над системой работы является перемещение взаимодействующих с ней внешних тел . В случае квазистатического, равновесного процесса элементарная работа dA , совершенная для изменения объема тела на величину dV , равна


    Где p - давление.

    Данная работа dA называется работой расширения и представляет собой работу, которую система производит против внешних сил .

    Полная работа при переходе системы из состояния с объемом V 1 в состояние с объемом V 2 будет равна

    Из геометрического смысла определенного интеграла следует, что работа А , совершаемая системой при переходе из первого состояния во второе, будет равна площади под кривой, описывающей данный процесс в координатах p , V (т.е. заштрихованной площади криволинейной трапеции, см. рис.1). Следовательно, работа зависит не только от начального и конечного состояния системы, но и от того каким образом был осуществлен переход из одного состояния в другое.

    Работа, как и теплота, зависит от того, каким образом осуществляется процесс. Работа и теплота наряду с внутренней энергией также являются формами энергии. Закон сохранения энергии в термодинамике называют первым началом (или первым законом) термодинамики .

    Для практического использования первого начала термодинамики надо условиться о выборе знака для теплоты и работы. Теплоту будем считать положительной, когда она сообщается системе, а работу положительной, когда система совершает ее против действия внешних сил.

    Первое начало термодинамики формулируется следующим образом: количество сообщенного системе тепла dQ расходуется на изменение внутренней энергии системы dU и совершение работы dA этой системой над внешними телами.

    (4)

    Внутренняя энергия является полным дифференциалом. Она не зависит от вида процесса, а определяется только начальным и конечным состоянием системы. При циклическом процессе изменение внутренней энергии равно нулю, т.е. Q =A .

    30. Температура. Температурные шкалы. Теплоемкость и внутренняя энергия идеального газа. Теплоемкости С р и С v

    Температура - одно из основных понятий, играющих важнейшую роль в физике в целом.

    Температура - физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы и определяющая направление теплообмена между телами.

    Понятие температуры в термодинамике введено исходя из следующих положений:

    1. Если тела А и В находятся в тепловом контакте, и теплота переходит от тела А к телу В, то температура тела А выше.

    2. Если теплота не переходит от тела А к телу В и наоборот, тела А и В обладают одинаковой температурой.

    3. Если температура тела А равна температуре тела С и температура тела В равна температуре тела С, то тела А и В также обладают равной температурой.

    В молекулярно-кинетической теории газов показано, что температура является мерой средней кинетической энергии поступательного движения молекул.

    Температура измеряется с помощью термометрических тел (какой либо параметр которых зависит от температуры).

    В настоящее время используют две температурные шкалы .

    Международная практическая шкала (шкала Цельсия), градуированная в градусах Цельсия (°С) по двум реперным точкам - температурам замерзания и кипения воды при давлении 1,013·10 5 Па, которые принимаются соответственно 0°С и 100°С.

    Термодинамическая температурная шкала (шкала Кельвина), градуированная в градусах Кельвина (К), определяется по одной реперной точке - тройной точке воды - температуре, при которой лед, вода и насыщенный пар при давлении 609 Па находятся в термодинамическом равновесии. Температура этой точки по данной шкале равна 273,16 К. Температура T= 0 K называется нулем Кельвина .

    Термодинамическая температура (T ) и температура (t ) по шкале Цельсия связаны соотношением Т =273,15+t

    Различные тела можно нагреть до одной и той же температуры путем подведения различного количества теплоты. Это означает, что различные вещества обладают разной восприимчивостью к нагреванию.

    Эту восприимчивость характеризует величина, называемая теплоемкостью .